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ln part H a number of examples, relevant to the offshore industry, >re given to
illustrate the theory which was presented in part I. Examples were divided in three

categories: linear dynamics, nonlinear dynamics and snap motions, and equivalent

linearization techniques.



Chapter 1

NUMERICAL APPLICATIONS

OF THE LINEAR DYNAMICS

1.1 Introduction

In this chapter, a. number of applications of the solutions for linear cab!i

dynamics are distussed, with the intention to illustrate the presented theory.

1.2 WKB Approximation of the Dynamics of Strings with Varying

Tension

The accuracy of the QliB solution for string~ ivith varying tensinn

tested for a linear tension variation. The legs of a tension leg platform vvere

modeled a a. string fnced at both ends. lVe consider two cases.

Case BCase A

ln the mass term the transverse added mass divas included. The ratio of

the top tension to the bottom tension v as:

T,/Tb 1.21 160

The second case vvas only selected to sho>i the behavior of the O'IiB

Length h  m!
Area  n!-!

Density  kg/m !
Lower tension  N!

M'eight  X/rn!
Xilass  kg/rn!

549

0.00215

i870

3"1 10'
1449

1907

549

O.OCi215

7870

5 103
1449

190 



met hod near t he turning point,

Comparison of the eigenfrequencics

Case BCase A

KVIiBEig en mod e Bess elO'IiBBess el

0. 19063

0399 5

O. 59888

0. 1 8796

0.39076

0, 59''"4

0.83733

1. 67482

n 51228

0.83744

1. 67488

2,51231

for accurat e an alysis j has been carried out by  liim 83j, where similarly good
agreement, divas found, First order 41M' solutions can give very ac curat e
results ivith a minimum of computational requirements.

1.3 Parametric Study of the Eigenfrequencies of a Two-Dimensional

Cable

The eigenfrequcncies of a two-dimensional cable hanging under its o»»
vveight have been studied extensively numerically, as well as experiment a lid

The 0 KB method provides accurate results, even very close t o the
turning point of the solut ion. The approximation is inc reasin ly bet ter l'or
higher frequencies. because the variation of the static quantities over a vvave
length is smaller, ln addition to the eigenfrequencies, the eigenn~odes are al o
favell approximated. The "worst" ca. e result is given in figure 1-1, » hi«Ii
shows the approximation for the first mode of case B. Agreement in tl>is

case is st ill su r pris in gl> good.

The extension of the above ideas to include bending rigidity  necessary
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Figure l-l: Comparison between the Mode Shapes of the
AVID Solution and the Bessel Solution
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Pugsley [Pugsley 49], Saxon and Cahn  Saxon 53] and Gn~dey [Gooder

6l! studied the behavior of inextensible cables. Pugsley, and Saxon and Ca!rn

performed a!so a limited number of experiments,

Irvine .and Caughey  lrvine 74] predicted succesfu!!y using approximate

analytic techniques the cross-over phenomena l'or a small sag, horizontal cab!e.

Among the most recent numerical contributions on eigen frequenc ies of

extensible cables are: West et al. [West 75], Gambhir and Batche!or  Gambhir

77] and Henghold et al. [Henghold 77]. Ramberg and Bartho!omew  Rarnberg
82! did some experiments on the vibration of inclined slack cables. Althou h

all of the above authors were able to confirm the existence of cross-over

phenomena for extensible cables in the horizontal case, the phenomena of

hybrid modes were not detected. This is mainly due, in the author's opinion,

to the very small transition region in the cases considered by the above

researchers. Yamaguchi P'amaguchi 79] used a Galerkin's expansion ivith

sinusoidal terms to calculate the eigenfrequencies. He obtained hybrid modes

and the non-crossing of the modes.

In the course of this report, a number of perturbation and numerical

ca!culations of eigenfrequencies were carried out. We wi!! brieflv discuss some

of the results.

1.3.1 Non-Dimensiona! Parameters

The governing equations in non-dimensions! form depend on]v pn 4 non

dimensional parameters when a uniform cable hanging under its own weight is

considered. They can be written as:

l, The ang!e of inclination  p,! of the line connecting the two end
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points with a horizontal.

2, The ratio of the total weight of the cable and the tension
projected on the chord  e = w L/H cosp = w I/H~!.

3. The projected elastic strain: the ratio of the projected tension and
the uniform stiffness of the cable  P = H,/E-A!.

4. The ratio of the mass and the mass plus the added mass.
The non-dimensional frequency was selected as follows:

where; ~ is the frequency

L is the length of the cable

H, is H/cosP

M is the mass plus the added mass

H is the horizontal tension

In the case of string; ~ = n n = 1, 2, 3

used,

The above non-dirnensionalisation of the frequency has thc advantage that.
it virtually eliminates the dependency of the eigen frequencies on h. The
influence of the variation of h on 2 is small and will not be discussed here.
In the sequel, cables in air will be analysed  h = 1!. The results, thougii,
shouM be a good approximation for the eigenfrequencies in water when  !.!! is
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1.3.2 Inextensible Cables

The non-dimensional parameters are in this case;

l. P, tbe inclination angle

wL
2. a = �, the non-dimensional weight parameter

H<

Three representative inclination angles were selected: 0, 30, 60 . The
non-dimensional weight parameter was varied between 0 and 5, The cables for
high values of o are extremely slacl  for a horizontal cable, o
corresponds to a. top angle of 68 !.

The results can be found in figure 1-2 � 1-4. The solid lines are the
results obtained with the inextensible perturbation theory. Tbe + marks
denote the results obtained with the numerical central difference schon>e �00
points!. The numerical solution can be considered as an "exact" solution,
considering the resolution of the graph. For small o, the shalloiv sag
inextensible eigenfrequencies are recovered. The curves are tangential to a
horizontal line for the small sag inextensible eigenfrequencies. The a<nail sag
results can, therefore, be extrapolated to moderately large values of o.

The perturbation theory predicts fairly accurately the eigenfrequencies for
the whole range of a and 4 . Only for very high values of a and/p! bjgh
inclination angles the predictions are deteriorating. Due to the nature of tbe
perturbation expansions the prediction will be more accurate for the higher
modes. This can be clearly seen on figure 1-4.
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CL

CA

X X
CO

3.

Figure 1-2: Eigenfrequencies for an Inextensible Cable,
= G

a

 Solid line: inextensible perturbation theory!
 + marks: numerical central difference scheme ivith 100 points!
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Eiaenfrequencies for an inextensible Cable,
= 30

Figure 1-3:

 Solid line: inextensible perturbation theory! + marks: numerical central difference scheme ~vith 100 points!
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Figure 1-4: Eigenfrequencies for an Inextensible Cable,

= 60

 Solid line: inextensible perturbation theory!
 + marks: numerical central difference scheme with 100 points!
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1.3.3 Extensible Cables

The eigenfrequencies of extensible cables  with h = 1! depends on 3 non-

dimensional parameters:

1. P, the inclination angle

2, o, the non-dimensional weight parameter  w L/H.!

c~ EA !
el

c,-, H, P
 h = 1!

For steel cables, a value of 400 was selected for !/p {wave speed ratio of

20!. This can be considered to be close to the lowest acceptable value.

3, P, the projected elastic strain  H</EA!

There are several possibilities to represent the variation of the
eigenfrequencies in terms of these three parameters. %e will briefly discuss
two of them.

First, the projected elastic strain was selected as a fixed parameter. This
corresponds to choosing the ratio of the elastic and the transverse wave speed.
This is a fairly good choice, because the elastic strain is restricted in design
applications to be within a certain range. Yamaguchi p'amaguchi 79] used
this approach in his paper, while the non-dimensional weight parameter was
selected as the independent variable. This allows direct comparison with

inextensible cables {A good alternative to this could be X,".!

The following relation between the ratio of the wave speed and the

projected elastic strain exists:



HLrH~
Figure 1-5: Eigenfrequencies for an Extensible Cable,

= 0,P= l/400

 Solid line: extensible perturbation theory!
 + marks: numerical central difference scheme!



2.

Eigenfrequencies for an Extensible Cable,
= 30, P = 1/400

Figure 1-6:

 Solid line: extensible perturbation theory!
 + marks: numerical central difference scheme!
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2.2

P.l

2.8

1.8

X.B

I.7

HLrH~
Figure 1-7: Transition zone:

Eigenfrequencies for an Extensible Cable.
= 30, P = I/400

 Solid line: extensible perturbation theory!
 + marks; numerical central difference scheme!
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5 M~

4.6+

2 ~

CP Ltl 5 CJl gp ~ g

NLr H~
Figure l-8: Eigenfrequencies for an Extensible Cab/e,

= 60, P = 1/400

 Solid line: extensible perturbation theor!!
 + marks: numerical central difference scbemc!

+
I
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The results can be found in figures 1-5 through 1-8. The solid lines ar»

the results obtained using the perturbation theory and assuming an extensibl»

cable. For the slow solution, the first order approximation  Q e! = Q ! wa:

used, which provides exponential or sinusoidal slow solutions. The + marks
denote the results obtained using a numerical central difference scheme

�00 points!. The cross-aver is predicted accurately for an inclination angl» ol'
00. For inclined cables the transition region is also well predicted by the

perturbation theory. To prove clearly that no cross-over exists, an
enlargement of the transition zone for an inclination a~gle of 30 was made in
figure 1-7, Again, the solution breaks down for large values of o and large
inclination angles, as seen in figure 1-8. When the parabolic cylinder functioiis
are used instead of the exponentials in the slow solution, a much better

approximation for large a and hrge 4 is obtained. This has a drawback in
that the perturbation approximation becomes, of course, numerically more

complicated, Overall, the simple exponential slow solution predicts the
eigenfrequencies fairly accurately. The case selected here IP = 1/400! implies
high straining of the cable and, therefore, for most applications the transition
will occur for smaller values of a� for which the perturbation solution will bc

increasingly more accurate. For very low values of a, the solution tends to
the eigenfrequencies of the taut string, while for high values of n, the
eigenfrequencies of the inextensible cable are obtained.

The previous graphs have the drawback that the transition zone is

strongly dependent on P, This can be reduced by plotting the eigenfrequencies
nversus X-. For small sag cables, as demonstrated in part l, the

eigenfrequencies depend only on !,. For large sag cables this is not valid. but
nthe representation in terms of X," is still useful. X< can be expressed as:
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w L 2 EA

H. H~ l

In figure 1-0 and 1-10 the eigenfrequencies are plotted versus X;. The
parameter a, is kept fixed and is allowed to take three values �, 0.5, 13.
Figure !-10 is an enlargement of the transition zone of the first and second
modes. The eigenfrequency curves were cut off at P = !/�0. The cut-ol'f
value of !; is higher for higher values of a� for which the transition zone2

becomes clearly more pronounced. With the exception of the transition zone,
the shallow sag extensible theory gives a good approximation for values of
a, < 0.5. Figure l-l! provides the shallow sag eigenfrequencies and can be
considered a fairly good approximation for a, C 0.5, outside the transition
zone. For horizontal cables, the modes are crossing over and figure 1-11 will
be approximately valid even for higher values of o,.

l.4 Linear Dynamic Analysis of a Guy

The eigenfrequencies for the guy of a guyed tower were cakulated using
the finite differences and an approximate analytical method. The eigenmodes
obtained by the finite difference scheme are also shown. Finally the undamped
transfer functions for the guy, were calculated using both the perturbation
method and the finite difference scheme {�0 discretisation points!.
The data for the guy are:
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Figure 1-9; Eigenfrequencies of Extensible Cables vs, X,  p = 30!2

I  solid line: a< � � 0; dash line: a, = O.S;
dot-dash line: a, = 1!
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wI, 2 EA
cos  P }

In figure 1-9 and 1-10 the eigenfrequencies are plotted versus !-, The
parameter o+ is kept fixed and is allowed to take three values �, 0,5, 1!.
Figure 1-10 is an enlargement of the transition zone of the first and second
modes. The eigenfrequency curves were cut off at p = 1/100. The cut-off
value of X," is higher for higher values of o,, for wbich the transition xone2

becomes clearly more pronounced. With the exception of the transition zone,

the shallow sag extensible theory gives a good approximation for values of
a,   0.5. Figure l-ll provides the shallow sag eigenfrequencies and can be
considered a fairly good approximation for o<   0.5, outside the transition
zone. For horizontal cables, the modes are crossing over and figure 1-11 wdl

be approximately valid even for higher values of a,.

1.4 Linear Dynamic Analysis of a Guy

The eigenfrequencies for the guy of a guyed tower were calculated using
the finite differences and an approximate analytical method. The eigenmodes

obtained by the finite difference scheme are also shown. Finally the undamped
transfer functions for the guy, were calculated using both the perturbation

method and the finite difference scheme �00 discretisation points}.

The data for the guy are:
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Figure 1-9: Eigenfrequencies of Extensible Cables vs. X,  Q = 30!2

I
 so'lid line: a, = 0; dash line: e, = O.S;

dot-dash line: e = I!
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Fignre 1-10: Enlargement of the Plot of the First Tavo

Eimenfrequencies of Extensible Cables vs. I+ � = 3O!

 solid line: a, = 0; dash hne: a, = O.S;
dot-dash line: a, = 1!
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A static analysis of the problem gives the following results:  see figure

1-12!

33.056
14.8740

940.88 m

24.399

P � is the angle formed between the cable chord and the horizonta}.

The eigenfrequencies can be l'ound in table 1-1. They were calculated

using the finite difference scheme described in part I chapter 3. The mode

configuration is only approximately symmetric or anti-symmetric, because the

inclination angle destroys the symmetry about the cable midpoint. The results

above were calculated numerically, but the perturbation theory and even

Irvine's inclined cable results, predict essentially the same values for the

eigen frequencies.

To calculate the eigeafrequencies approximately with Irvine's modified

theory for inclined angles, the methods described in part I, chnpter 3.8.7 can
be used. '4'e obtain for symmetric modes:

Lop

boIL
Mass
Added mass

Net weight
D,
EA

Length
Depth

CD,
CD,
No externa,l current

1 332 000 Y

1 155 098 N

48.7 kg/m
6,3 kg/m
414,98 N/m
O.OSSQ m

1.30 I09 N
1. 038 m

428.70 m

1.2

0.05
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The eigenfrequencies for the guy are:

calculated by finite differences �00 points!

grad/sec! T period! mo<le shape

6.9370.9011

5.2581.1949

3,9061.6086

1.8?28 3.447

2.7182.3115

2.7527 2.283

3.2335 1.943

3,7059

Table 1-1: Eigenfrequencies, Finite Differences

k.L kaL 4 k,L
tan - + � �= 0

2 2 1, 2

wL ~EA

H

4 = inclination angle between the cable chord
and the horizontal

r]n
with: k. = ~

H.

anti-symmetric

symmetric

syrnrnetric

anti-symmetric

symmetric

anti-symmetric

syrnrnet,ric

anti-symmetric
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For anti-symmetric modes:

k~L
sm =0

ln the case ol' tbe guy we have:

H.
L

1 225 882 N

1036 m
108.17

~ rad/sec! T period! mode shape

antoiae

s.at i-symmetric

symmetric

symmetric

aa ti-symmetric

symmetric

anti-symmetric

symmetric

anti-symmetric

0.9054 6,940

5.2971.1861

3.9091.6072

3.4701,8109

2.7432,2908

2.7163 2,313

1,9803.1736

1.7353.6218

1-H: Eigenfrequencies, Analytic Method

The analytic method can give as shown in l-ll re!iable estimates pf tbe

eigenfrequencies  and eventually also of the eigenmodes!. To give the reader a

The eigenfrequencies can now be calculated directly by using the abov<

formulas. For the symmetric eigenfrequencies the transcendental equation es-

to be solved or looked up in a table [Irvine 81}. As result we obtain:

The eigeafrequeacies for tbe guy are:

calculated by analytic method
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notion about tbe shape of the modes, some figures for thc first four modes
and for the quasi-static solution are presented. For the modes the solution

has been normalised as described in part I, but with the amplitude written in

non-dimensional form  normalised amplitude -  M! ~2 L!, The four essential
quantities for each mode are plotted, i.e. the tangential displacement, the
normal displacement, the dynamic tension and the dynamic angle.

The second and third modes are symmetric, which is explained by the

fact that the cable is in the region where the first symmetric mode has shifted

to a higher value than a taut string mode, while the third symmetric mode

bas not. The dynamic tension is nearly constant or slowly varying for t.he Iovv

modes shown. The quasi-static solutioa is the solution to an imposed unit

motion at the top in the aormal aad tangential direction at the limit of sera

frequency.

The impedance transfer functions at the top have also been calculated at

the top. For a definition of the transfer functions see part I chapter 7. The

transfer functions have been calculated by the perturbation method and by the

numerical finite difference method. In the perturbation theory, the zeroth

order slow solution was used, To leading order the slow solutioa is generating

tbe dynamic tension and the fast solutioa is generating the dynamic angle.

In figures 1-37 through 1-30 a comparison of the transfer functions of the

perturbation theory and the numerical, finite difference scheme is given.

The peaks corresponding to the anti-symmetric modes are very narrow,

and do not contribute to the transfer functions  anti-symmetric modes

= 0.90 and ~, = 1.82!. The symmetric modes are solely responsible for

the resonance phenomena  u>, = 1 19, >a~ = 1 61, a3, = 2.31!. The



-31-

Figure 1-13: First Mode of a Guy: Tangential Displacement

Figure 1-14: First Mode of a Guy: Normal Displacement
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Figure 1-15: First Mode of a Guy: Dynamic Tension

Figure 1-1S: First Mode of a Guy: Dynamic Angle
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Figure 1-17: Second Mode of a Guy: Tangential Displacement

WIN

Figure 1-18: Second Mode of a Guy: Normal Displacement



-34-

I h
@TH COORBIHR7EN!

I i

Figure 1-20: Second Mode of a Guy: Dynamic Ang!e

Figure 1-10: Second Mode of a Guy: Dynamic Tension
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Figure 1-21: Third Mode of a Guy: Tangential Displacement

Figure 1-22: Third Mode of a Guy: Normal Displacement
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Figure 1-23: Third Mode of a Guy: Dynamic Tension

Figure 1-24: Third Mode of a Guy: Dynamic Angle
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Figure 1-25: Fourth Mode of a Guy. Tangential Displacement

Figure 1-26: Fourth Mode of a Guy: Normal Displacement
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Figure 1-27: Fourth Mode of a Guy: Dynamic Tension

Figure 1-28: Fourth Mode of a Guy: Dynamic Ang!e
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Figure 1-29: Tangential Quasi-Static Solution:
Tangential Displacemen t

Figure 1-30; Tangential Quasi-Static Solntion:
Normal Displacement
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Figure 1-31: Tangential Quasi-Static Solution:
Dynamic Tension

Figure 1-32: Tangential Quasi-Static Solution;
Dynamic Angle
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Figure 1-33: Normal Quasi-Static Solution:
Tangential Displacement

Figure 1-34: Normal Quasi-Static Solution:
Normal Displacement
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Figure 1-35: Normal Quasi-Static Solution: Dynamic Tension

Figure 1-36: Normal Quasi-Static Solution: Dynamic Angle
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List of Figures of Eigenmodes and Ouasi-Static Shapes

1-13 1-161-14

1-17 1-18 1-"01-19

1-21 1-22 1-241-23

1-25 1-26 1 27 1-28

tangential
quasi-static

norma!

quasi-static

1-311-29 1-30

1-33 1-34 1-35 1-36

agreement between perturbation and numerical solution, in the range

considered, is very good,

1.5 Ixapedances of a Two-leg System

As a simple example of impedances of a, multi-!eg system, the impedances

of a two-leg system are analysed, For the symmetric configuration the

impedance function S. is simply twice the individual leg impedance function,

In this example the guy data described in the previous section are used for the

individual legs  See figure 1-40!. 1n the assyrnetric twoleg system  figure 1-41!

the static tension in one of the legs was diminished by 200 000 K. The toti]

impedance function S is the addition of the individual impedance function:.
xx

The symmetric eigenfrequencies of both leg appear in the total impedance

function.

first mode

second mode

third mode

fourth mode

tan gen tial normal dyn. tension dyn. angle
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Sxx
lBB.BE~85

758.BEiB<

5BB.BEi84

258.BE+8<

OC

B.BB.BB

4 -258.BE+8<
-588.BE+84

-758. BE+8

-f88. BE+85

FREQUENCY  RRDrSEC!
Figure 1-37: S for a Guy af a Guyed Tower

 Solid line: perturbatiou theory!
 Dashed line: finite difference scheme!
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JBH.B:+BS

758.BE+84 i

588.8E+84;

258.8E+e<

8.8E+BB-

!C -258.8E+8< -'
-588.8EiB<

-758.BE~8<

-188.BE~85

F REQUENCY  RRDr SEC!
Figure 1-38: S = S for a Guy of a Guyed To~ver

xy yx

 Solid line: perturbation theory!
 Dashed line: finite difference scheme!
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VREQtJENCY  RRDr'SEC!

Figure l-39: S for a Guy of a Guyed Toiler
xx

 So!id line: perturba.tion theory!
 Dashed line: finite difference scheme!



-47-

.6

OMEG  RAD. /sec!

REAL-SXX

S

X 1
X

SXX-MULTI LEGS ; SYMMETRIC CABLES

0.4 0.6 0.8 1.0 1 ~

Figure 1-40: S for a Symmetric Two-leg System
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Figurc l-4l: S for a Assymmetric Two-leg System
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Chapter 2

NUMERICAL APPLICATIONS OF

NON-LINEAR DYNAMICS

2.1 Introduction

In this chapter, a number of applications are provided, to demonstrate

the practical implications of the theory presented in part t, and to validare the

theoretical predictions by comparing them with experimental data and previou=

solutions,

2.2 The Non-Linear String

The use of modal expansions was first tested on a non-linear strin .

First, some calculations were performed including non-linear drag. ii hich

introduces an amplitude dependent damping, The results obtained can be seen

as a special case of the second numerical application presented in this chapter

 drag forces oa a cable! and are therefore omitted. The study of a string with

geometric non-linearity, as discussed in part I chapter 4, was the second case

considered, and is presented in the sequel.

The dimensions of a guy of a guyed tower were used for the taut strin,

for demonstration purposes.

String characteristics: T = 1 000 000 iv'
hf = 48.7 kg/m
L = l 036.32 rn
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EA 0 214 10

The eigenfrequencies in nir can be obt,aiued as:

-+ 0.434, 0.861,

The string was subject at one end to a transverse sinusoidal excitation
with frequency equal to the first natural frequency. The coefficient of the
geometric non-linearity is selected as {see part I chapter 4!:

EA 1 {Ampl!-
r � 0.01

T 2L-
0

For a realistic strain in the string, of the order of 103, this corresponds
to an A/L ratio of approximately 4.5 10 . The case considered was selected
because it can be compared witb Oplinger's theoretical results. [Oplinger 60I

DampingTime step as a
fraction of the
exiting period

number
of modes

0,05

0.05

0,05

Table 2-I: Geometric Non-Linearity

The time steps are the minimum required to ensure

convergence and accurate response calculations. Except for

the case with no damping, the expansion using one znode

gave essentially the same result as the expansion with

Note:

Fig.7-1-7-2
Fig.7-3

Fig.7-4-7-5
Fig.7-G

!/�00
!/20
1/100
1/�0

3-6

1-3-6

1-3-6

1-3- 6

0.01

0.01
0-0.01
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modes.

Several time simuhtion runs were performed. A linear modal damping»"-.

also in trod uc ed, The simulation results can be seen in Table 2-1. Tli e

amplitude of the imposed motion is taken as equal to I, and the amplitude

at the rniddle of the cable is given in the graphs. Also the tension variatiou

is calcula,ted.

In figures 2-l and 2-" the effect of a pure geometric non-linearity is

studied. Because no damping is present, a beating phenomenon, caused by the

non-decaying transient solution, is obtained. The dynamic tension oscillates at

double the exciting frequency as expected.

Figure 2-3 sho»s the response with linear damping only, Figures 2-4 and

2-8 show the effect of the geometric non-linearity with some damping included.

Figure 2-6 presents a comparison between the motion without geometric non-

linearity and the motion with geometric non-linearity. The geometric non-

linearity is clearly limiting the amplitude of the motion, The final value of

the response with geometric non-linearity is around 3 at resonance, »hich

agrees well »ith Oplinger's theoretical and experimental investigation.

2.3 Linear Cable Model with the Non-Linear Drag Force

In order to study the effect of the drag force on the motions of a cable,

it was decided to use the linearised cable model, with the drag forces treated

as external forces. In this example a guy of a guyed tower was excited in the

normal direction, at the top.

The data for the guy are:
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IQ
CQ

TIME

Figure 2-1: Non-L,inear String; Motion at Midlength

Comparison ~itb Unit Motion at the Top
r= 001

damping = 0
aT = 1/1000 T

3 Qlodes
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MRS

Figure 2-2; Non-Linear String; Dynamic Tension

�3ynamic Tension is given as a fraction of tbe Static Ten.ion!
r = 0.01

damping = 0
DT = 1/1000 T

3 modes
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7.58

5 F 88

2,58

8.88

-2.58

Figure 2-3: Non-Linear String; Motion at Midlength

Comparison ivith Unit Motion at the Top
r=0

damping = 0.05
AT = 1/'~0 T

PCT
3 modes



2.88

f.88

8. 88

! 88

2.N

-3 I 88

-f.88

Figure 2-4: NNon-Linear String; Motion at hfid!ength

IComparison ivith Linit Motion at the Top
r = 0.01

damping = 0.05
ZT = 1/100 T

per
3 modes
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~ 18

~ 38

~ 28

~ f8

Figure 2-5: Non-Linear String, DynaInic Tension

 Dynamic Tension is given as a fraction of tbe Static Tension!
r= 0,0l

damping ~ 0.0G
DT = l/l00 T e,

3 modes
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5.88

-2.58

-5.88

-7.58

TXNE

Figure 2-6: Non-l inear String; Motion at Midlength;
Comparison between responses with and without geometric non-linearity

 solid line!

r= 001

damping = 0.05
hT = 1/100 T �

3 modes



A static analysis of the problem gives the following results:

33.056

14.874

940.68 m
24 399o

<~y
0b�
hx

sy is tbe angle formed between tbe cable chord and tbe horizontal.

The linear dynamics of this example were already discussed in chapter 1
Using the modes, described in chapter 1 the influence of tbe drag forces was

studied by exciting tbe cable with a top motion in the normal direction. The

simulations were done using 4 - 8 - 16 modes. The results for 8 modes s.re

showa here. The simulation with four modes gave a similar envelope curve
except. for the high amplitude motions. The results are given in figures 2-7
through 2-10. The excitation frequency was equal to the first resonance

frequency except for figure 2-7, for which excitation causes quasi-static motion,

The plots represent the superposition of the shapes of the cable obtained at

different time steps, so that nn envelope of the transverse response of the

cable is obtained.  This envelope contains also tbe transient phenomena! Tbe
plots give the motion normal to the static shape at each point expressed as a
fraction of the A/D ratio, which was varied between 1.5 and 1pp.

Lop

boL
Mass

Added mass

Net weight
D,
EA

length
Depth
CD
CD,
No external current

1 332 PDD N

1 155 096 N

48.7 Rg/m
6.3 kg/rn
414.98 N/m
0.0889 m

1.30 i0 N

1 036 m

426.70 m

1.2

0.05
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LENGTH �9k,DINRTE.i ili

Figure 2-7: Quasi-Static Motion at very Lo~v Frequency

>prmal displacement along the guy.
Top motion has unit amplitude in the normal direction.

  A/D=l. !
b.T= l/100 T er



Figure 2-8: Response to Top Excitation
at First Resonance Frequency, A/D = 1.5

Normal displacement along the guy.
Top motion A/D = 1.5 in the normal direction,

AT= 1/100 T �
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T1lhL ~'INLKFlTI ON
l9.8Q

-5. G~
Q

LDvi=iH I N~Ff~lNRiEi: t1;~

Figure 2-9: Response to Top Excitation
at First Resonance Frequency, A/D = 10

Normal displacement along the guy.
Top motion A/D = 10 in the normal direction

hT= 1/100 T
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~ '4
IJI

Figurc 2-10: Response to Top Excitation
at First Reson>nce Frequency A/D = 100

Normal displacement along the guy.
Top motion A/D = 100 in the normal direction.

bT= >/100 Tper
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dominant effect of the drag force at high amplitudes becomes clear,

The increasing importance of the drag force can simply be explained bi
!ooking at the ratio of inertia versus drag forces:

F~ 05p C Dv A-

F,,�p�, 1/4 ~ D- ~' A

2 p A
CD

p!t D

2.4 Coxxxparison of Non-Linear Cable Model Results with Davenport's
Exper ixnen ts

A computer code using the non-linear modal expansions, described in part
chapter 5 was developed. The results of the code were compared with

experimental data obtained by Davenport IDavenport 65I.

Davenport's experiments consisted of moving the top of a guy cable
sinusoidally in the horizontal direction through an excentric mechanism driven
by an electric motor. The horizontal tension was measured by strain gauges.
The horizontal motion at the top was also measured  See figure 2-11!. The

cable consisted of a piano wire of 0,026 inch diameter with cylindrical ~veights

attached, to obtain the correct total weight to tension ratio. The cab!e was

irnrnersed in different liquids  oil or water} during the experiments to obtain

different, damping characteristics, Only one experiment  case 2.1 in water! was

considered in this comparison.

The horizontal amplitude of excitation in the experiment was set at O,G1

inch. The da,ta for the experiment are;
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Figure 2-11: Experimeatal Arrsagement for Dynamic tests

Pavenport 65j
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= 41.06

Hi/AK = 0.000671

WL/H = 0."0'2  KV is weight in air!

Davenport measured the horizontal component of the dynamic tension

caused by an imposed horizontal motion at the top for various frequencies.

The amplitude of the motion was 0.01 inch. The measured tension can be

viewed, apart from a scale factor, as the impedance function S discussed inxz

parL l. For the given amplitude, the geometric non-hinear effects are not

important and the damping forces are linear. The linear damping is due to

the very low Reynolds number for both the oscillating cable and the attached

cylindrical weights.

A number of time simulations, using the data of Davenport's experiment.

were performed using the non-linear cable code. A linear modal damping was

included in the code to simulate the linear damping of the cable. A damping

coefficien t of 4~a, as suggested by Davenport, was used. This agrees

approximately with the range of damping coefficients suggested by Ram berg

and Griffin [Ramberg 77]. The selected damping coefficient should only be

considered as a best estimate given the complicated coul'iguration of the cable

with the attached cylindrical weights, The Lime simulations were continued

until a steady state was reached �0-'20 periods!.

The results are plotted on the graphs provided by Davenport, The

frequency has been non-dimensionalised with respect ' to the first natural

frequency of the equivalent string and the transfer function has been non-

dimensionalised ~vith respect to the horizontal dynamic stiffness coefficient of



Figure 2-12: Impedance Function in the Horizontal! Direction
IDavenport 65I
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the equivalent string,

S = S /k with 1  = EA/L cos~P

= ~/~, with ~, = x  H,/M! / /L

Using the linear cable theory the eigenfrequencies were calculated as  see

part I!:

symmetric

anti-syminetric

= 1.73

V2 � � 2.04

V3 = 3.06

m< = 4.02

symmetric

an ti-symmetric

The transfer function obtained by the time simulations can be found in

figure 2-12. The solid line represents Davenport's theoretical calculations. The

dotted line shows the experimental results and the line annotated by plus +!

symbols shows the results obtained from the simulations, The simulation

results agree fairly well with the experimental data considering the rough

estimation of the damping coefficient. The location of the eigenfrequencies is

predicted accurately using the linear cable theory outlined in this report. The

syrnrnetric modes are the only ones which contribute significantly to the

transfer function, as expected. The time simulations predicted a steady state

sinusoidal response, which was actually observed experimentally by Davenport.
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2.5 A Comparison betw'eea the Non-linear Cable Model and Non-

linear String Model

Tbe results of' the previous section were all within the linear regime. To

test the code in the non-linear regime, the string example discussed in section

2,1 was simulated using the non-linear cable model. The data used can be

found in section 2.1. The results can be found in figures "-13 and 2-14, wbere

it can be seen that the strings results are recovered. The major difference

between the string and the cable analysis lies in the fact that in the string

analysis the assumption is made, a priori, that the dynamic tension is constant

over the length. If such an assumption is not made, the elastic modes seem to

play an essential role in the redistribution of the dynamic tension over the

cable, and they must be included to obtain a dynamic tension which is almost

constant throughout the cable. This means that in the non-linear geometric

regime elastic vibration modes must be included to get accurate results. The

prediction of the motion in the middle, though, can be predicted accurately

even when the elastic modes are left out of the response calculations.

To show the influence of sag on the geometric non-linearity, a cable

weight term was added to the equations used in the previous example, which

causes the cable to sag. This of course causes an asymmetric behavior of the

cable: The dynamic tension when the cable is below its equilibrium position is

larger f' or a cable than for a string, while the opposite is true when the cable

moves above its equilibrium position, This can be seen in figures 2-15 und

2-16. The total cable weight to length ratio is still very small in this

 WL/H = 0.008!. For a larger sag, the peak in the upward direction of the

non-linear tension >vill disaPPear comP!etely. Also, the linear comPonent of the
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SIMULATION: NORMAL SINUSOIDAL NOTION TOP
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O.

O.

D 0.
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e
0.2

S ~ 0.2

0.1
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O.O

O.

10 12 14

TIME  PERIODS!

Figure 2-14: Non-linear String', Dynamic Tension {cable model!

 Dynamic Tension is pven as Iraction ol the Static Tension!
r = 0.01

damping = 0,05
b,T= 1/100 T

8 transverse modes, 3 elastic modes
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SIMULATION: NOIMiU SINUSOIDAL NOTION TOP

0.8
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O.

0.
D

0 ~

T e n 0.
S O.

O.

O.

-0

TX ME  PERIODS�!

 Dynamic Tension is given as fraction of the Static Tension!
s = 0.01

damping = 0.05
hT= 1/100 T �

8 transverse modes,3 elastic modes
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tension plays a significant role when the amplitude of the motion is small

2.6 Nonlinear Boundary Condition

2.7 Snap motions

A horizontal cable was subjected to a horizontal motion of one of its end

points. The data for the cable considered are:

H

Mass

EA

Length
Depth
No drag forces,

88 300 N
8,84 kg/m
1.2 10' N
365 rn

0 m

no added mass considered

Figure 2-18 and 2-19 present the simulated time history at point !/5th of the
cable length from the fixed end with the excitation consisting of a harmonic' ~

oscillation of the form:

To illustrate the effect of a non-linear boundary condition, a sinusoidal
motion was imposed on a string which is laying for one third of its length on
a horizontal surl'ace, The data for the string are again the values used in
section 2.1. For the timesirnulation a linear spring stiffness of 1000 N/m and
a damping of 2000 N s/rn was used. A tirnestep of 1/200th of the period
gave accurate results For the motions along the length  see figure 2-17!. In
this case the motions are highly dependent on the stiffness and damping
selected, Further investigation how this selection influences the calculated

response of mooring lines will certainly be required.
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S IUULRT I QNI NOR[1RL SINUSOIDAL ViOT ION T OP

N 0 R A L 0 T I
0 N T1nE  SEC!

SIP TOP
S!5 lr'eL

. SIN 1r'2L
SIP 3r'4L

Figure 2-1T: String with Nonlinear Boundary Condition

Bottom over 1/3 of the length of the string
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p = 0.0003 sin> t

In figure 2-18 the frequency is at the first elastic frequency and in figure 2-19
the excitation is at the first transverse natural frequency. The simulations
were carried out using the first ten transverse mode shapes and the first five
elastic mode shapers neglecting all other modes except the one bracl eting the
elastic modes  See part I chapter 8!, The time step was set at 0.001'2 second,
after some trial and error determined this to be a safe and stable value.

The interesting feature in both of these figures is the time lag before the
start of any significant motion. If the elastic waves traveHed at a speed equal
to the pure elastic wavespeed,

EAc,l � �   ! ~ = 3 683 m/5
m

it should tal.e the motion 0.079 seconds to reach the point being studied.
Careful study of the l'igures reveals that this is indeed the case which confirms
the succesful inclusion of the elastic waves in the simulation.
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8.8858

C 0 E 48 . 8883
0 Q.I 0 0 C 0 I C C 0

-8. 8868

8.888 8.>88 8.288 8.S88 8.<88 8.588 8.688

e

Figure 2-l8: Snap lI-fation: Excitation at First Elastic Frequency

Response of Cable Point at s=l/5
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t ime  aec!
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Figure 2-19: Snap h.lotion: Excitation at, First Transverse Frequenci-

Response of Cable Point at s=l/5
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Chapter 3

NUMERICAL APPLICATIONS

OF LINEARIZATION TECHNIQUES

3. I Introductioa

Ia this chapter, a number of comparison between the drag linearization

results and time simulation calculations are provided. For relat ive small

motions the agreement is relatively good. For larger motions geometric

aonlinearities become importaat and the hnearization technique underestimates

the tension generated. It will be showa that the dynamic tensioa generated

due to a unit amplitude is significantly affected by the drag nonlinearity. A]so

the effect of the mooring line stiffness on the dynamic tension mill be briefly

discussed.

3.Q Comparison of Linearisatioa Results and Nonlinear Time

Simulat/ons

h this section, the motions predicted by the linearized code and the

aoaliaear time domain code are compared directly. For this purpose a string

aad a cable were excited at one ead ia the transverse direction at the

resonance frequencies. The importance of the hydrodynamic drag has been

demonstrated ia the previous chapter.
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3.2.1 String Results

The data for the string analysed are:

One end of the string was moved sinusoidally at the first string resonance

frequency which is a symmetric mode. The comparison between the Iinearized
theory and the time simulation can be found in figures 3-1, 3-2 and 3-3. The
figures are the superposition of one period of the time simulations at steady
state and the linearized results for different ratios of amplitude to diameter.

The agreement between the linearized solution and the time simulation is
acceptable even for large ratios of amplitude to diameter. In figures 3-4, 3-5
and 3-6 the normal displacement along the string are given, This normal

displacements have been obtained by the full nonlinear code.

3.2.2 Cable Reau]ts

The data for the cable analysed are  identical to guy in previous

chapters!:

T

Total h4ass
Net weight
D

KA

Length
Depth

CD,
CD,
No external current

1 000 000 N
48.7 kg/m
0 N/m
0.0889 m
1.30 10~ N
1 036 m

Om

lo

0.05
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0 2

TIME  SKC!

Cl

0

0

N 0
R M
A L

N 0 T I
0 N

SIMULAT! ON: NORMAL SINUSOIDAL MOTION TOP

4 6 8 10 12 14

FRKQ SIM 1/4L
FREQ SIM 1/2L
FREQ SIM 3/4L
FREQ SIM L
SIM 1/4L
SIM 1/2L

.. SIN 3/4L
SIN L

Figure 3-1: Linearization ol the Drag Forces: String 1D
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0 2 4

TIME  SEC!

D 0

0

Figure 3-2: Linearization of the Drag Forces: String 10D

0

R M
A L

M 0
T I
0 N

SIMULATION: NORMiM SINUSOIDAL MOTiON TOP

ERKQ SIM 1/4L
FREQ SIM 1/2L
FREQ SIM 3/4L
FREQ SIM L
SIM 1/4L
SIM 1/2L
SIM 3/4L
SIM L
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SIMULATION: NORMAL SINUSOIDAL MOTION TOP

0 0

0

Figure 3-3: Linearization of the Drag Forces: String lOOD

10

0

R

A L

M 0
T 5
I
0

-10

6 8 10 12 14

TIME  SEC!

FREQ SIM 1/4L
FREQ SIM 1/2L
FREQ SIM 3/4L
FREQ SIM L
SIM 1/4L
SIM 1/2L
SIM 3/4L
SIM L
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S I HULRT I ON NQRNRI S INUSQ I3RL HOT I ON TOP
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Figure 3-4: Displacement; String 1D
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Figure 3-5: Displacement: String 10D
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Figure 3-6: Displacement: String 100D
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One end of the cable was moved sinusoidally at the first string resonance

frequency which is a assymmetric mode. The comparison between t he

linearized theory and the time simulation can be found in figures 3-7, 3-8 and

3-9. The figures are the superposition of one period of the time simulations at

steady state and the linearized results for different ratios of amplitude to

diameter.

The agreement between the linearized solution and the time simulation is

also acceptable in this case, In figures 3-10,' 3-11 and 3-12 the normal

displacements along the cable are given. This normal dispiacernents have been

obtained by the full nonlinear code. In section 2.3 equivalent envelopes where

obtained by using the linearized equations with a nonlinear drag force. Here

the geometric nonlinear effects are included in the analysis. The non

symmetric motion of the cable due to geometric stiffening can clearly be

observed for the 100 D case. This should be compared with the result in

section 2.3

Tt p
Lot

Mass

Added mass

Net weight
D
E-A

Length
Depth

CD,
CD,

Dx

No external current

1 332 000 N

1 155 096 N

48,7 kg/rn
6.3 kg/m
414,98 N/rn
0.0889 m

130 10 N

1 036 m

426.7 m

1.2

0.05

33.056

14.874

940,68 m

24.399
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0

TIME  SEC!

C}

0 b 0

N 0 R M A L
M 0

T I 0 N

CABLE NOP24M SINUSOIDAL MOTION TOP

FREQ SIM 1/4L
FREQ SIM 1/2L
FREQ SIN 3/4L
FREQ SIM L
SIM 1/4L
SIM 1/2L
SIM 3/4L
SIM L

Figure 3-V: Liaearixation of the Drag Forces: Cable 1D



-91-

TIME  SEC!

0 0

0

N 0 R M A L
M 0
T I
0 N

CABLE NORMAL SINUSOIDAL MOTION TOP

FRKQ SIM 1/4L
FREQ SIM 1/2L
FRKQ SIM 3/4L
FREQ SIM j
SIM 1/4L
SIM 1/2L
SIM 3/4L
SIM L

Figure 3-8: Linearization of the Drag Forces: Cable 10D
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TI NE  SEC�!

C3

0

0

Figure 3-9:

N 0

R M A L
M 0
T I
0 N

CABLE NORMAL SINUSOIDAL NOTION TOP

FREQ SIM 1/4L
FREQ SIN 1/2L
FREQ SIN 3/4L
EREQ SIN L
SIM 1/4L
SIM 1/2L
SIM 3/4L
SIM L

Linearisation of the Drag Forces: Cable 100D
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CRBL.E HORHRL SIHUSOIDRL MOTION TOP

0 T !
0

ST'RCE

Figure 3-10; Displacement: Cable 1D
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CRBEE NQRP1RL S!NUSQIDAL fiQTIOR TOP

N
p 5
R

A p
L

SPACE

Figure 3-11: Displacement: Cable 10D
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CRBLE HORHRL S INUSOIDRL HOT ION TOP

100

50

R p

-15

SPRCE

Figure 3-l2: Displacement. Cable lGGD
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3.3 Equivalent Impedance functions

Using the equivalent linearixation, equivalent impedance functions can be
obtained for sinusoidal motion of tbe top. Two examples are analysed: The
guyed tower example and a slacker mooring line used in a typical semi-
submersible configuration. For tbe theory on impedance functions the reader
is referred to part I.

3.3.1 S for the Guy

The data for this case can be found in the previous section. Four
horizontal top impedance functions are given for different amplitudes in figures
3-13, 3-14, 3-15 and 3-18. Figure 3-13 is only to show tbe undamped response
of the system. In the case of such a small motion the drag force model used
is of course not really valid. Tbe impedance functions are substantially

modified due to the strong effect of tbe drag forces. Tbe dynamic response of

the cable is dominated by the drag effects.

3.3.2 ST� for the Mooring Line of a Semi-anbmersible

'The data for the selected mooring line are:
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TOP EXCITATION OF 0.01 DIPXETERS
EQUIVALENT DANPING FORCK

1OC&

S X g 2
 

/ N ! -20 0.5 OgKG  RAD./sec!
REAL-SXX
Ie,C-SXX

Figure 3-13: 5 for a Guy of a Guyed Tower: 0.01D
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TOP EXCITATION OE l DIAMETER
EQUIVALENT DIPPING FORCE

S X X  

N / M ! a. OREG  RAD. /sec!
REAL- SXX
IMAC-SXX
ASS-SXX

Figure 3-14: S far a Guy of a Guyed Tower: 1D
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TOP EXCITATION OF 10 DIAMETERS
EQUIVALENT DAMPING FORCE

12

S 8

X X
6 

M ! 0.5 ONEG  RAD. /sec!
REAL-SXX
IMAG-SXX
ABS-SXX

Figure 3-15: S for a Guy of a Guyed Tower: IGD
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TOP EXCITATION OF 100 DIPRKTERS
EQUIVALENT DAMPING FORCE

S X

 

N / M ! 0.5 ONKG  RAD. /sec!
REAL- SXX
INAG- SXX
ABS-SXX

Figure 3-15: S for a Guy of a Guyed Tower: 100D
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In this case the dynainic tension per unit amplitude motion in the horizontal

direction has been plotted for various amplitudes. The result can be found in

figure 3-17. A liinited number of results of time simulations have been

superimposed on the plot. Agreement is good until a motion amplitude of

10D. At I OOD motion amplitude the Iinearized theory predicts much lovver

values of dynamic tension as the time simulations. The fi ure shorvs also that

the dynamic tension can increase due to drag effects in the loiv frequency

range. The drag forces are the dominant forces on the cable, and therefore.

induce significant dynamic tension as they reduce the motions.

3.4 Investigation of the Change of Tension Ixnpedance function due

to Laxzibda

lt is we	 know that in linear theory large dynamic tensions are predicted

near cross-over. In this example the stiffness ol' mooring line» as varied

continously to investigate how this behavior is influenced by the drag forces.

top

boy
Mass

Added mass

Net weight
D

EA

Length
Depth
CD
CD,
<~p
<b.t
5x

No externa,l current

700 OOO N

497 286 N
33.51 kg/m
6.3 kg/m
29G N/m
0.0889 m

0.424 10 N

1 700 m

700 rn

1.2

0.05

44.73

O.O'

1503.22 m

24.97
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R 3GDCD

0

.2
0.2

0 0

  20000
N

! l XX,'&

Dynamic Tension per unit amplitude
in the horizontal direction

 equivalent linearized damping!

Frequency  rad/sec!

1 D
10 D
100 D
No Damping
1 D time sim.
10 D time sim.
100 D time sim.

Figure 3-l7: ST� for a Mooring Line
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The data for the selected mooring lines are:

T 1 400 ODD N
top

bot
1 197 618 N

Mass 33.51 kg/m
Added mass = 6.3 kg/m
Net weight 290 N/m
D 0.0889 m

Length 1 700m
Depth 700 rn
CD� 1 2

CD~ 0.05
top

33.84

<b. 13.84

5x 1545.31 rn
24,370

kV n
No external current, the stiffness was varied so that Xg
varied between 10 and 200.

The results can be found in figures 3-18, 3-19 and 3-20. The figures show the

dynamic tension per unit horizontal and vertical motion at tbe first two
l7

eigenfrequencies when X," is varied. When X, is 4'- the two eigenfrequencies

are very close to each other and according to linear theory a significant

dynamic tension can be generated. This linear prediction is confirmed

qualitatively by figure 3-18. At larger motion amplitudes the dynamic tension

is increasing when the line becomes less extensible. It shouM be emphasised

that this are the results at two particular frequencies, and that these are not

necessarily the frequencies where the generated dynamic tension has

maximum.
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DYNAMIC TENSION PER UNIT ANPLITUDE
OF EXCITATION VS. XANBDA**2

D Y N R A 0 KANBDA**2
X-1st Freq.
Y-1st Freq.
X-2nd Freq.
Y-2nd Freq.

Figure 3-18: ST� for a Mooring Line in function ot Lambda: 0.01D
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DYNAMIC TENSION PER UNIT AMPLITUDE
OF EXCITATION VS. LAMBDA**2

50

1000

1000

LAMBDA~*2

Figure 3-19: ST� for a Mooring Line in function of Lambda: 1D
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DYNAMIC TENSION PER UNIT AMPLITUDE
OF EXCITATION VS. LAMBDA*~2

LANBDA* ~ 2

Figure 8-20: ST for a Mooring Line in function of Lambda: IOD
Tx
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